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A Closed-Form Solution to  
Multi-Point Scheduling Problems 

Larry Meyn*  
NASA Ames Research Center, Moffett Field, CA, 94035-0001 

A closed-form algorithm is proposed as a tool by which aircraft can be 
scheduled through an arbitrary number of scheduling points within 
allowable time constraints. The algorithm supports the specification of one or 
more time constraints at each point, along with minimum and maximum 
allowable travel-time constraints between points. A constraint algebra that 
simplifies the expression of time constraint calculations is used to formulate 
the algorithm. An example is then presented of an automated scheduler that 
uses constraint algebra and the new algorithm. The scheduler implements 
prospective operations for San Francisco International airport that is able to 
accommodate formation landings of aircraft pairs on closely spaced parallel 
runways for specified speed and timing constraints. A simulation of the 
scheduler shows that allowing flights to land in formation on two closely 
spaced parallel runways can reduce flight delays by 72% to 98% by enabling 
use of a second runway under adverse weather conditions when compared 
with the current single runway operation. 

I. Introduction 
HE Federal Aviation Administration has a goal to improve the utilization of available airport 
capacity without decreasing safety or increasing controller workload.1 One way to address 

this goal is by extending and improving the assignment of scheduled times of arrival for flights 
to a series of specific points along their routes. These points can include fixes, arcs, runway 
thresholds and boundary crossings. More scheduling points than are used in the current system 
will be needed. The scheduled times of arrival at each point will need to satisfy multiple 
scheduling constraints and meet physically realizable minimum and maximum travel-time 
constraints between points.  

Several approaches for determining viable schedules have been investigated. One approach is 
to calculate them directly from the constraints, by use of a closed-form method. While closed-
form solutions have been used for two-point schedules,2-5 they have not been used to determine 
schedules with more than two points.  The multi-center scheduler presented by Landry6 breaks 
up the scheduling problem into loosely coupled sub-problems to reduce its complexity. A 
scheduler developed for airborne merging and spacing solves the problem by iteratively trying 
possible scheduling times.7 Others have utilized optimization routines8,9 and commercial 
constraint solvers.10 One possible reason why closed-form algorithms are not used for multi-
point scheduling is the expectation that they might be too complex to implement. Such a 
                                                 
*Aerospace Engineer, Systems Modeling and Optimization Branch, MS 210-15, and AIAA 
Associate Fellow. 

T 



 
American Institute of Aeronautics and Astronautics 

 

 

2 

possibility could easily be inferred from the apparent complexity of the closed-form, two-point 
scheduling algorithms, such as those developed by Neuman2,3 and Wong.4  

One way to reduce the complexity of scheduling calculations is to recast the equations by use 
of a constraint algebra, as was done previously for Neuman’s two-point scheduler.5 Because the 
constraint algebra simplifies the expression constraint calculations in a manner similar to matrix 
algebra, the perceived complexity of Neuman’s algorithm is significantly reduced. The resulting 
implementation of the software for scheduling calculations was more concise and easier to 
follow than Neuman’s original code. In this paper, the same constraint algebra is used to develop 
a concise, closed-form scheduling algorithm that is applicable to scheduling problems with any 
number of points.  

The next section of this paper presents the development of the closed-form, multi-point 
scheduling algorithm in three subsections. First, an example problem is posed and the steps 
required to solve the problem are described. An overview of the constraint algebra is then 
presented, followed by a detailed description of the new, closed-form, multi-point scheduling 
algorithm. Section III describes a simulation that uses the new algorithm for scheduling very 
closely spaced parallel approach operations at San Francisco International Airport. The results 
from the simulation are then presented in section IV, followed by some concluding remarks in 
section V.  

II. Multi-Point Scheduling 

A. Example Multi-Point Scheduling Problem 
Multi-point scheduling problems can be solved by propagating scheduling constraints to all 

points along a route in both the downstream and upstream directions. The steps required to 
propagate the constraints are described for a notional scheduling problem. Figure 1 depicts a 
“node-link” diagram for a scheduling problem with four scheduling points, designated A, B, C 
and D. The links represent paths between the points. The links are directional, as shown by the 
arrowheads, and the flights passing through B, C and D may have origin and destination points 
that are not shown. A master schedule is maintained, to reserve blocks of time at each point for 
previously scheduled flights. These blocked schedule times are constraints on the schedule times 
available at each point. The problem is to generate viable scheduling times for a flight arriving at 
A at time 0, and then continuing on 
through points B, C and D. In 
addition to the blocked schedule 
times at each point, the minimum 
and maximum travel-times between 
sequential points further constrain 
the solution.  

The constraints for this example are depicted in Fig. 2(a). Each point has a schedule time-line 
shown here with vertical grid markings for a time scale with arbitrary units.  The red blocks 
represent schedule times that are, for example, unavailable due to previously scheduled flights. 
The green circle represents the arrival time of the flight at point A.  This flight has a minimum 
travel-time of two time units between points A and B, and a maximum travel-time of “None,” 
which indicates that indefinite holding is permitted. The minimum and maximum travel-times 
between points B and C are two and three time units, respectively. The minimum and maximum  

 
Figure 1. Node-link diagram for the example.  
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 (a) 

 (b) 

 (c) 
Figure 2. Schedule constraint propagation. (a) The dashed line shows the earliest estimated time 
of arrival based solely on minimum travel-time between points A, B, C and D. Minimum and 
maximum travel-times between points are specified.  A maximum of “None” means that holding is 
permitted. The red rectangles represent unavailable schedule times at each point. (b) The yellow 
shaded regions represent feasible scheduling windows as travel-time and point schedule constraints 
are propagated downstream. (c) The blue shaded regions show the propagation of constraints 
upstream.  The regions where the yellow and blue regions overlap represent viable scheduling 
windows that satisfy all constraints. 
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travel-times between points C and D are one and two time units, respectively.  The blue dashed 
line represents the schedule “path” for the earliest, unimpeded time of arrival at each point.  This 
path has an available schedule time at point D, but this path violates scheduling restrictions at 
points B and C. 

The propagation of scheduling constraints downstream, along the route from A to D is shown 
in Fig. 2(b).  The yellow shaded region between points A and B is the “window” of potentially 
viable schedule times between A and B, given the arrival time constraint at A.  The green circle 
identifies the arrival time at A. The minimum travel-time between A and B defines the lower 
bound of the scheduling window between A and B.  The upper bound of the window is defined 
by the maximum travel-time, which in this case is unbounded.  At point B, the reachable times of 
the scheduling window are constrained by the blocked schedule times #1 and #2. Based on these 
constraints, there are two scheduling windows between B and C. Again, the lower bounds are 
defined by the minimum travel-time and the upper bounds are defined by the maximum travel-
time. It should be noted that schedule block #1 creates an unreachable range of schedule times at 
point C. Next, the reachable times at point C are constrained by the blocked schedule times #3 
and #4, which results in three scheduling windows.  These are then propagated to point D and 
constrained by the blocked schedule times #5 and #6. This completes the downstream 
propagation of constraints, which results in three viable scheduling ranges at point D. 

To complete the identification of feasible scheduling windows, the viable scheduling ranges at 
point D are propagated back upstream, as shown in Fig. 2(c). The blue shaded regions between 
adjacent points illustrate how downstream constraints are propagated upstream. Areas where 
these blue regions overlap the yellow, downstream propagation regions are shown as green.  In 
propagating schedule constraints upstream, the lower bounds of the reachable upstream schedule 
time windows are defined by the maximum travel-time, and the upper bounds are defined by the 
minimum travel-times. For a schedule to be viable, it must satisfy both downstream and 
upstream constraints. In Fig. 2(c), the viable scheduling windows are the green areas, where the 
downstream propagation regions, shown in yellow, and upstream propagation regions, shown in 
blue, overlap. 

B. Application of Constraint Algebra to the Example 
The foregoing example shows how constraint propagation can be performed manually.  The 

process can also be programmed by explicitly testing each individual constraint in the sequence 
described. However, the constraint algebra described in the appendix of Ref. 5 can be used to 
represent these calculations more concisely. The algebra represents time constraints as ranges of 
allowable schedule times at points or travel-times between points. The simplest constraint is a 
single pair of values that represent the minimum and maximum limits of a viable time range. In 
addition to numerical values, either limit can be set to a value of “None” to indicate that the limit 
has no constraining value. Constraints representing scheduling ranges at a point can consist of 
multiple time range pairs, while constraints representing the travel-time range between points 
should consist of a single time range pair. 

The constraint algebra defines the “&” operator to represent the logical “and” operation for 
combining two sets of scheduling constraints, as well as the “|” operator to represent logical “or” 
operation.  A logical “not” operation is also defined. The “+” operator in the expression 

€ 

A + ab( )
, is used to propagate the schedule-time constraints at A downstream using the travel-time 
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constraint given by 

€ 

ab .  This is defined as adding the minimum travel-time constraint of 

€ 

ab  to 
each minimum schedule-time constraint in A, and adding the maximum travel-time constraint of 

€ 

ab  to each maximum schedule-time constraint in A. The “-” operator in the expression 

€ 

B − ab( ), 
is used to propagate the schedule-time constraints at B upstream using the travel-time constraint 
given by 

€ 

ab .  This is defined as subtracting the maximum travel-time constraint of 

€ 

ab  from each 
minimum schedule-time constraint in B, and subtracting the minimum travel-time constraint of 

€ 

ab  from each maximum schedule-time constraint in B.  The “+” and “-” operators also support 
the addition of scalar values to constraints, as defined in Ref. 5. 

Equation (1) prescribes the initial constraint at point A, which is represented by the variable 
Ai. The subscript “i” indicates that it is an initial constraint value. The value (0,0) indicates that 
the arrival time at A is precisely zero, which is the start time for this example. Equations (2)-(4) 
provide the initial constraint values for points B, C and D. For convenience, these are defined in 
terms of the blocked scheduled range pairs for the blocked ranges shown in Fig. 2. The “not” 
operator is used to convert them from blocked schedule range pairs to allowable schedule range 
pairs. For example, the initial constraint for point B, given by Eq. (2), would be 
[(None,0.5),(2.5,7),(9,None)] after the application of the not operator. This indicates that an 
allowable schedule time would be before 0.5, between 2.5 and 7, or after 9.  

 

€ 

Ai = 0,0( )[ ]  (1) 

 

€ 

Bi = not 0.5,2.5( ), 7,9( )[ ] (2) 

 

€ 

Ci = not 3,5( ), 7,9( )[ ]  (3) 

 

€ 

Di = not 1,3( ), 5.5,8( ), 11,13( )[ ]  (4) 

Equation (5) defines variable, 

€ 

ab , as the travel-time constraint between points A and B. Travel-
time constraints are defined as a single pair of constraint values representing the minimum and 
maximum travel-times.  In this case, the minimum travel-time is two units, and the maximum 
travel time is None, which means the flight can be delayed indefinitely along this link. Equations 
(6) and (7) give the travel-time constraints between points B and C, and between points C and D. 

 

€ 

ab = 2,None( )[ ] (5) 

 

€ 

bc = 2,3( )[ ]  (6) 

 

€ 

cd = 1,2( )[ ] (7) 

The point constraints in Fig. 2(b) are propagated downstream by use of the travel-time 
constraints between points. The propagation of the constraint at point A to point B, via the travel-
time constraint, 

€ 

ab , is given by the term (Ai + 

€ 

ab) in Eq. (8). The result is combined with the 
initial constraint at point B using the logical “&” operator.  The resulting constraint value is 
assigned to a new, temporary, constraint value for point B, designated Bt. The constraint value is 



 
American Institute of Aeronautics and Astronautics 

 

 

6 

subscripted with the letter “t” because it is considered temporary as it does not include the 
influence of downstream constraints. In a similar fashion, Eq. (9) is used to calculate a temporary 
value for the constraint at C using constraints propagated from upstream. Equation (10) 
completes the downstream propagation of constraints.  Because there are no downstream points, 
the result is subscripted with the letter “f ” to indicate that it is the final constraint value for point 
D. 

 

€ 

Bt = Ai + ab( )& Bi (8) 

 

€ 

Ct = Bt + bc( )&Ci  (9) 

 

€ 

Df = Ct + cd( )& Di  (10) 

In Fig. 2(c), the point constraints are propagated upstream by use of the travel-time 
constraints between points.  In Eq. (11), the final constraint at D is propagated upstream to C by 
the term (Df - 

€ 

cd ). The “-” operator represents the calculations needed for upstream propagation 
of the constraints. By use of the logical “&” operator, the result is combined with the previously 
calculated constraint value, Ct. The result is the final constraint value for point C, designated Cf. 
In a similar fashion, Eqs. (12) and (13) are used to propagate constraints upstream and calculate 
the final constraint values for points B and A.  

 

 

€ 

Cf = Df − cd( )&Ct  (11) 

 

€ 

Bf = Cf − bc( )& Bt  (12) 

 

€ 

Af = Bf − ab( )& Ai  (13) 

Using software that implements the constraint algebra, the time constraint values given in 
Equations (1)-(7) were entered into the propagation equations, Eqs. (8)-(13). Evaluation of these 
equations produces the following values for the feasible schedule ranges at each point. These 
values agree with those that were determined manually in Fig. 2(c). 

 

€ 

Af = 0,0( )[ ] (14)  

 

€ 

Bf = 3,5( ), 6,7( ), 9,None( )[ ] (15) 

 

€ 

Cf = 6,7( ), 9,10( ), 11,None( )[ ] (16) 

 

€ 

Df = 8,9( ), 10,11( ), 13,None( )[ ]  (17) 
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C. The Multi-point Scheduling Algorithm 
Equations (8)-(13) provide a solution for a four-point schedule.  Similar sets of equations can 

be easily developed for other scheduling point counts. For N points, 2(N-1) equations are needed. 
To avoid having to generate customized equation sets for different numbers of scheduling points, 
a recursive algorithm was developed, which is depicted in Fig. 3. 

The code was written in the object-oriented, programming language Python, which supports 
the creation of data structures called “objects” with specialized methods and operators. It utilizes 
previously developed code5 that implements constraint objects that support logical operators for 
combining constraints and the previously mentioned “+” and “-” operators for propagating 
constraints in both the downstream and upstream directions. The “getConstraints” function 
listed in Fig. 3, takes an input named “path,” which is an alternating list of point constraints 
and travel-time constraints, ending with a final point constraint. Line 2 of the algorithm takes the 
first three items of the list and assigns them to the variables “begin,” “link,” and “end.” The 
variables “begin” and “end” are the constraint objects for the first two sequential points of the 
list and “link” is the constraint object for the travel-time between them.  In line 2, the 
remainder of the “path” list is assigned to the variable “next.” Line 3 propagates the 
“begin” constraint downstream by adding the “link” constraint and is then combined with the 
“end” constraint using the “&” operator.  The result is assigned to the variable, “newend.”  
Line 4 tests to see if “next” is empty, which means the constraints have been propagated to the 
end of the original constraints list given by “path.” If “next” is empty, then it returns a two-
item list, which is the seed value for the process used to propagate constraints to upstream points.  

The remainder of the upstream propagation process, if needed, takes place if “next” is not 
empty and begins in line 8. Here “newend” is pre-pended to the list “next” and is passed in a 
recursive call to “getConstraints,” the result is assigned to the variable “conlist.” This 
result is the list of the final downstream constraints including “newend.” In line 9, the current 
value of “newend” is replaced by the first item in “conlist,” which has downstream 
constraints included. In line 10, the constraints for “newend” are propagated upstream by 

1   def getConstraints(path): 
2       begin, link, end = path[:3] 
3       next = path[3:] 
4       newend = (begin+link)&end 
5       if next == []: # End of the list 
6            return [(newend-link)&begin,newend] 
7       else: 
8           conlist = getConstraints([newend]+next) 
9           newend = conlist[0] 
10          return [(newend-link)&begin] + conlist 

Figure 3. Multi-point constraint propagation algorithm. The algorithm, as implemented 
in the Python programming language, is presented here with line numbers added. The 
algorithm takes a list, named path, consisting of alternating point constraints and travel-time 
constraints, ending with a final reference point constraint. It returns a list of constraint objects, 
one for each reference point, that represent the viable scheduling times. 
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subtracting “link” and then combined with “begin” using the “&” operator. This result is pre-
pended to “conlist” and then returned. 

This ten-line algorithm is valid for any number of points, and the number of calculations 
varies linearly with the number of points. Fig. 4 shows the feasible scheduling windows for an 
example with nine scheduling points, eight travel-time constraints, and twenty-six blocked 
schedule-times. This calculation only took 5ms on a single 3Ghz processor core.  Computation 
time for the entire calculation could likely be reduced by at least an order-of-magnitude if a 
multi-threaded, compiled programming language were used instead of Python. 

III. A Multi-Point Scheduling Simulation 
To demonstrate the algorithm with a more relevant multi-point scheduling scenario than the 

foregoing examples, a simple terminal area arrival simulation was developed.  The scenario 
chosen was adapted from a scenario developed for ongoing research on very closely spaced 
parallel approach (VCSPA) operations.9,11-14 To study potential new procedures, a modified set 
of Standard Terminal Arrival Routes for San Francisco International Airport was developed for 
instrument approaches that allow the pairing of some flights for formation landings on runways 

  
Figure 4. Plot of viable scheduling windows for a nine-point example problem. Blocked 
schedule times are depicted as red bars for each scheduling point. The viable scheduling 
windows are shown in green. 
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28L and 28R.  Because these two runways are only 
750 feet apart, simultaneous use is currently only 
allowed under visual flight rules.  Currently, when 
visibility is poor, only one runway is used, which 
reduces the airport’s arrival capacity by one-half.  

The basic idea for VCSPA operations is presented 
in Fig. 5, which has two aircraft on paired approach 
paths. The leading aircraft has a straight-in approach 
to runway 28L.  The following aircraft flies along the 
path shown. When the lead aircraft crosses the 
coupling point, the autopilot of the following aircraft 
couples with the leader in order to maintain constant 
spacing within a safe zone.  The safe zone is specified 
as between five and twenty-five seconds in trail, 
which is far enough behind the leading aircraft to 
avoid a blunder by the leader and far enough forward 
to avoid the hazard posed by the leader’s wake 
vortices.13,14 

The six arrival routes into San Francisco that were 
developed for evaluation of VCSPA operations are 
depicted in Fig. 6. Each route has a “split point,” 
where a flight is either directed to runway 28L or it is 
designated as a follower in a paired approach into to runway 28R. For the scheduling simulation, 
there are four reference points along each route where time-based separation constraints are 
enforced.  These are the route entry points, the split points, the coupling points and the runway 
thresholds.  At the route entry points and the split points, the time separation constraints were set 
to enforce five nautical mile 
separations for the expected 
aircraft speeds at these 
locations. At the coupling points 
and at the runway thresholds, 
the time separation constraints 
are set to enforce standard wake 
separation distances,15 for the 
expected approach and landing 
speeds. All of these separation 
constraints were represented as 
constraint pairs and combined, 
where necessary, by use of 
constraint algebra operations. 

The minimum travel-time 
constraints between the points 
were based on nominal speeds 
and the maximum travel-time 
constraints were assumed to be 
10% greater than the nominal 

 
Figure 6. Simulated terminal arrival routes for San 
Francisco International Airport. 
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travel-times. Flights designated as follower and directed to runway 28R were further constrained 
to be within five and twenty-five seconds of the leader’s scheduled arrival time at the coupling 
point and at the runway threshold.  It is also assumed that flights could be delayed any amount of 
time prior to their arrival at the route entry points. To determine the allowable scheduling times 
for each possible route, the point constraints and the travel-time constraints were combined into a 
list for processing by the multi-point algorithm described in section II.C. 

A simple event-based, first-come-
first-served scheduler was also 
developed for the simulation.  The 
scheduler maintained a queue of 
flights that were available for 
assignment of scheduling times. 
When a flight bound for San 
Francisco crosses the planning-
horizon, shown in Fig. 7, the flight is 
added to the scheduling queue. The 
flight is first assigned an arrival route. 
Then the unimpeded estimated time 
of arrival (ETA) to the route entry 
point is calculated, along with the 
unimpeded runway threshold ETA.  
When any flight in the scheduling 
queue is determined to be within ten 
minutes of it’s route entry point ETA, 
a scheduling event is triggered.  Then 
the flights in the scheduling queue are 
sorted by the order of their runway 
threshold ETAs, and the flight with 
the earliest ETA is chosen for scheduling. Blocked schedule-times at each point along a flight’s 
route are determined from the scheduled arrival times of previously scheduled flights along with 
separation times that provided the minimum required separation distances at the expected flight 
speeds. The point constraints and travel-time constraints are evaluated for routes to both runways 
28L and 28R by use of the multi-point scheduling algorithm. Flights are only assigned to 28R if 
they can be follower aircraft in a paired approach. To enforce this rule, the route to 28R is only 
assigned if the flight can meet the follower constraints when paired with a preceding flight 
scheduled for 28L. If those constraints cannot be met, then there is no viable schedule to 28R and 
the flight would be assigned the route to 28L. The earliest viable time of arrival for each point is 
entered into the schedule and the flight is removed from the scheduling queue. Because flights 
are scheduled in the order of the their runway arrival ETAs, it is possible that the flight that 
triggered the scheduling event is not the first flight to be scheduled. If this is the case, then 
additional flights are scheduled in the sorted order until the flight that triggered the scheduling 
event is scheduled. 

To simplify the problem, only scheduled arrivals into San Francisco were included in the 
simulation and this list of flights is further reduced to only include aircraft equipped with jet 
engines.  A total of 362 flights, derived from scheduled arrivals for April 3, 2006 were simulated 
in a scenario representing current day traffic. To simulate a future scenario with twice the traffic, 

 
Figure 7. The 200 nmi radius planning-horizon 
centered on San Francisco International Airport. 
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a second scenario was created where each flight in the first scenario was entered twice, but with 
the nominal arrival time of the second flight entry is offset by five minutes from the first. Both of 
these scenarios were simulated with and without VCSPA operations enabled.  

IV. Simulation Results 
The simulation provided scheduled arrival times at each reference point for each flight along 

an available route. For each scenario simulation, the schedule times were individually evaluated 
to ensure that proper separation times were enforced.  These evaluations found no separation 
violations, which is an indication that the scheduling constraints were properly enforced. Table 1 
presents a summary of total and average delay times predicted by the simulation for each 
scenario. For the current day, “1x Traffic,” traffic load, when VCSPA formation landings were 
enabled, the total and mean delays are reduced by 72% when compared to the single runway 
arrival operations that are currently allowed when visibility low. When the traffic load is 
doubled, the delay reduction is 98% when VCSPA operations are enabled.  The 1x traffic 
scenario, with VCSPA formation landings, has 44 formation landings, while the 2x traffic 
scenario has 194 formation landings.  

V. Concluding Remarks 
It was demonstrated that multi-point, time-based scheduling problems, for a series of points 

with both scheduling time constraints and travel-time constraints, can be solved by constraint 
propagation. A previously developed constraint algebra, that represents the combination and 
propagation of constraints, is used to develop a new, closed-form, multi-point scheduling 
algorithm. The algorithm provides all potential scheduling windows for any number of points 
with multiple scheduling constraints at each point.  The algorithm is fast and computation time 
scales linearly with the number of reference points. 

This algorithm was used to develop a scheduling simulation for flights into San Francisco 
International Airport for very closely spaced parallel approach operations that allow formation 
landings.  The first-come, first-served scheduler developed is able to identify numerous 
formation-landing pairs for a network of approach routes, each having four scheduling points.  
This preliminary study showed that delay reductions of 72% to 98% might be feasible by 
enabling the use of a second parallel runway under adverse weather conditions. 

Use of constraint algebra and the multi-point scheduling algorithm made it very easy to 
develop a first-come, first-served scheduler for a relatively complex route structure.  The ability 
to quickly calculate closed-form scheduling solutions for a given sequence of flights should also 
be useful in developing more optimal schedulers. One application would be schedulers that 
implement constrained position shifting,16 which allow limited modifications to a first-come, 
first-served sequence. However, any optimization scheme that primarily operates by permutation 
of scheduling order could potentially benefit from rapid, closed-form, scheduling calculations. 

Table 1. Total and average delay for scenarios with and without VCSPA operations. 
 

 Without VCSPA With VCSPA 
Traffic Load Total Delay (hr) Mean Delay (min) Total Delay (hr) Mean Delay (min) 

1x Traffic 4.7 0.8 1.3 0.2 
2x Traffic 902 75 13.5 1.1 
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